3.270 \(\int \frac{A+B \sec (c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=354 \[ \frac{3 \sqrt{2} A \tan (c+d x) F_1\left (\frac{1}{6};\frac{1}{2},1;\frac{7}{6};\frac{1}{2} (\sec (c+d x)+1),\sec (c+d x)+1\right )}{d \sqrt{1-\sec (c+d x)} \sqrt [3]{a \sec (c+d x)+a}}-\frac{3^{3/4} B \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt{\frac{(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \text{EllipticF}\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right ),\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{\sqrt [3]{2} d (1-\sec (c+d x)) \sqrt{-\frac{\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \sqrt [3]{a \sec (c+d x)+a}} \]

[Out]

(3*Sqrt[2]*A*AppellF1[1/6, 1/2, 1, 7/6, (1 + Sec[c + d*x])/2, 1 + Sec[c + d*x]]*Tan[c + d*x])/(d*Sqrt[1 - Sec[
c + d*x]]*(a + a*Sec[c + d*x])^(1/3)) - (3^(3/4)*B*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x]
)^(1/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(2^(1/3) - (1 + Sec[c + d*x])^(
1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (1 + Sqrt[3])*(1
 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(2^(1/3)*d*(1 - Sec[c + d*x])*(a + a*Sec[c + d*x])^(1/3)*Sqrt[-(((1 +
 Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^
2)])

________________________________________________________________________________________

Rubi [A]  time = 0.366077, antiderivative size = 354, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {3924, 3779, 3778, 136, 3828, 3827, 63, 225} \[ \frac{3 \sqrt{2} A \tan (c+d x) F_1\left (\frac{1}{6};\frac{1}{2},1;\frac{7}{6};\frac{1}{2} (\sec (c+d x)+1),\sec (c+d x)+1\right )}{d \sqrt{1-\sec (c+d x)} \sqrt [3]{a \sec (c+d x)+a}}-\frac{3^{3/4} B \tan (c+d x) \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right ) \sqrt{\frac{(\sec (c+d x)+1)^{2/3}+\sqrt [3]{2} \sqrt [3]{\sec (c+d x)+1}+2^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} F\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right )}{\sqrt [3]{2} d (1-\sec (c+d x)) \sqrt{-\frac{\sqrt [3]{\sec (c+d x)+1} \left (\sqrt [3]{2}-\sqrt [3]{\sec (c+d x)+1}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{\sec (c+d x)+1}\right )^2}} \sqrt [3]{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^(1/3),x]

[Out]

(3*Sqrt[2]*A*AppellF1[1/6, 1/2, 1, 7/6, (1 + Sec[c + d*x])/2, 1 + Sec[c + d*x]]*Tan[c + d*x])/(d*Sqrt[1 - Sec[
c + d*x]]*(a + a*Sec[c + d*x])^(1/3)) - (3^(3/4)*B*EllipticF[ArcCos[(2^(1/3) - (1 - Sqrt[3])*(1 + Sec[c + d*x]
)^(1/3))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))], (2 + Sqrt[3])/4]*(2^(1/3) - (1 + Sec[c + d*x])^(
1/3))*Sqrt[(2^(2/3) + 2^(1/3)*(1 + Sec[c + d*x])^(1/3) + (1 + Sec[c + d*x])^(2/3))/(2^(1/3) - (1 + Sqrt[3])*(1
 + Sec[c + d*x])^(1/3))^2]*Tan[c + d*x])/(2^(1/3)*d*(1 - Sec[c + d*x])*(a + a*Sec[c + d*x])^(1/3)*Sqrt[-(((1 +
 Sec[c + d*x])^(1/3)*(2^(1/3) - (1 + Sec[c + d*x])^(1/3)))/(2^(1/3) - (1 + Sqrt[3])*(1 + Sec[c + d*x])^(1/3))^
2)])

Rule 3924

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, I
nt[(a + b*Csc[e + f*x])^m, x], x] + Dist[d, Int[(a + b*Csc[e + f*x])^m*Csc[e + f*x], x], x] /; FreeQ[{a, b, c,
 d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[2*m]

Rule 3779

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[(a^IntPart[n]*(a + b*Csc[c + d*x])^FracPart
[n])/(1 + (b*Csc[c + d*x])/a)^FracPart[n], Int[(1 + (b*Csc[c + d*x])/a)^n, x], x] /; FreeQ[{a, b, c, d, n}, x]
 && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] &&  !GtQ[a, 0]

Rule 3778

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[(a^n*Cot[c + d*x])/(d*Sqrt[1 + Csc[c + d*x]
]*Sqrt[1 - Csc[c + d*x]]), Subst[Int[(1 + (b*x)/a)^(n - 1/2)/(x*Sqrt[1 - (b*x)/a]), x], x, Csc[c + d*x]], x] /
; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] && GtQ[a, 0]

Rule 136

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((b*e - a*
f)^p*(a + b*x)^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f
))])/(b^(p + 1)*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] &&  !IntegerQ[m] &&  !Int
egerQ[n] && IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !(GtQ[d/(d*a - c*b), 0] && SimplerQ[c + d*x, a + b*x])

Rule 3828

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^In
tPart[m]*(a + b*Csc[e + f*x])^FracPart[m])/(1 + (b*Csc[e + f*x])/a)^FracPart[m], Int[(1 + (b*Csc[e + f*x])/a)^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 3827

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^2*
d*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((d*x)^(n - 1)*(a + b*x)^(m -
 1/2))/Sqrt[a - b*x], x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 225

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(x*(s
+ r*x^2)*Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2
)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4])/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[(r*x^2*(s + r*x^2))/(s + (1
+ Sqrt[3])*r*x^2)^2]), x]] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx &=A \int \frac{1}{\sqrt [3]{a+a \sec (c+d x)}} \, dx+B \int \frac{\sec (c+d x)}{\sqrt [3]{a+a \sec (c+d x)}} \, dx\\ &=\frac{\left (A \sqrt [3]{1+\sec (c+d x)}\right ) \int \frac{1}{\sqrt [3]{1+\sec (c+d x)}} \, dx}{\sqrt [3]{a+a \sec (c+d x)}}+\frac{\left (B \sqrt [3]{1+\sec (c+d x)}\right ) \int \frac{\sec (c+d x)}{\sqrt [3]{1+\sec (c+d x)}} \, dx}{\sqrt [3]{a+a \sec (c+d x)}}\\ &=-\frac{(A \tan (c+d x)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} x (1+x)^{5/6}} \, dx,x,\sec (c+d x)\right )}{d \sqrt{1-\sec (c+d x)} \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}-\frac{(B \tan (c+d x)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} (1+x)^{5/6}} \, dx,x,\sec (c+d x)\right )}{d \sqrt{1-\sec (c+d x)} \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}\\ &=\frac{3 \sqrt{2} A F_1\left (\frac{1}{6};\frac{1}{2},1;\frac{7}{6};\frac{1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) \tan (c+d x)}{d \sqrt{1-\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}-\frac{(6 B \tan (c+d x)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{2-x^6}} \, dx,x,\sqrt [6]{1+\sec (c+d x)}\right )}{d \sqrt{1-\sec (c+d x)} \sqrt [6]{1+\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}\\ &=\frac{3 \sqrt{2} A F_1\left (\frac{1}{6};\frac{1}{2},1;\frac{7}{6};\frac{1}{2} (1+\sec (c+d x)),1+\sec (c+d x)\right ) \tan (c+d x)}{d \sqrt{1-\sec (c+d x)} \sqrt [3]{a+a \sec (c+d x)}}-\frac{3^{3/4} B F\left (\cos ^{-1}\left (\frac{\sqrt [3]{2}-\left (1-\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}}{\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}}\right )|\frac{1}{4} \left (2+\sqrt{3}\right )\right ) \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right ) \sqrt{\frac{2^{2/3}+\sqrt [3]{2} \sqrt [3]{1+\sec (c+d x)}+(1+\sec (c+d x))^{2/3}}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}} \tan (c+d x)}{\sqrt [3]{2} d (1-\sec (c+d x)) \sqrt [3]{a+a \sec (c+d x)} \sqrt{-\frac{\sqrt [3]{1+\sec (c+d x)} \left (\sqrt [3]{2}-\sqrt [3]{1+\sec (c+d x)}\right )}{\left (\sqrt [3]{2}-\left (1+\sqrt{3}\right ) \sqrt [3]{1+\sec (c+d x)}\right )^2}}}\\ \end{align*}

Mathematica [B]  time = 19.1237, size = 2709, normalized size = 7.65 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^(1/3),x]

[Out]

(2^(2/3)*Cos[c + d*x]*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(2/3)*(1 + Sec[c + d*x])^(1/3)*(A + B*Sec[c + d*x])*((
B*Sec[(c + d*x)/2]^2*(1 + Sec[c + d*x])^(2/3))/2 + (A*Cos[c + d*x]*Sec[(c + d*x)/2]^2*(1 + Sec[c + d*x])^(2/3)
)/2)*Tan[(c + d*x)/2]*((-A + B)*AppellF1[3/2, 2/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d
*x]*Sec[(c + d*x)/2]^2)^(2/3)*Tan[(c + d*x)/2]^2 + (27*(A + B)*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2,
-Tan[(c + d*x)/2]^2]*Cos[(c + d*x)/2]^2)/(9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2
] + 2*(-3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*AppellF1[3/2, 5/3, 1, 5/2, T
an[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)))/(3*d*(B + A*Cos[c + d*x])*(a*(1 + Sec[c + d*x])
)^(1/3)*((Sec[(c + d*x)/2]^2*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(2/3)*((-A + B)*AppellF1[3/2, 2/3, 1, 5/2, Tan[
(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(2/3)*Tan[(c + d*x)/2]^2 + (27*(A + B)*
AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[(c + d*x)/2]^2)/(9*AppellF1[1/2, 2/3,
1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(-3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(
c + d*x)/2]^2] + 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)))/
(3*2^(1/3)) + (2^(2/3)*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(2/3)*Tan[(c + d*x)/2]*((-A + B)*AppellF1[3/2, 2/3, 1
, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(2/3)*Tan
[(c + d*x)/2] + (-A + B)*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(2/3)*Tan[(c + d*x)/2]^2*((-3*AppellF1[5/2, 2/3, 2,
 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + (2*AppellF1[5/2, 5/3,
1, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5) + (2*(-A + B)*AppellF
1[3/2, 2/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Tan[(c + d*x)/2]^2*(-(Sec[(c + d*x)/2]^2*Sin[c +
d*x]) + Cos[c + d*x]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(1/3)) - (27*(
A + B)*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[(c + d*x)/2]*Sin[(c + d*x)/2])/
(9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(-3*AppellF1[3/2, 2/3, 2, 5/2, Tan[
(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*
Tan[(c + d*x)/2]^2) + (27*(A + B)*Cos[(c + d*x)/2]^2*(-(AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c
 + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/3 + (2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[
(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/9))/(9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Ta
n[(c + d*x)/2]^2] + 2*(-3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*AppellF1[3/2
, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2) - (27*(A + B)*AppellF1[1/2, 2/3,
1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Cos[(c + d*x)/2]^2*(2*(-3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c +
 d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Sec[
(c + d*x)/2]^2*Tan[(c + d*x)/2] + 9*(-(AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec
[(c + d*x)/2]^2*Tan[(c + d*x)/2])/3 + (2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*S
ec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/9) + 2*Tan[(c + d*x)/2]^2*(-3*((-6*AppellF1[5/2, 2/3, 3, 7/2, Tan[(c + d*x
)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + (2*AppellF1[5/2, 5/3, 2, 7/2, Tan[(c + d
*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5) + 2*((-3*AppellF1[5/2, 5/3, 2, 7/2, Tan
[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])/5 + AppellF1[5/2, 8/3, 1, 7/2, Tan[
(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))))/(9*AppellF1[1/2, 2/3, 1, 3/2, Tan
[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*(-3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]
^2] + 2*AppellF1[3/2, 5/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2)^2))/3 + (2*2^
(2/3)*Tan[(c + d*x)/2]*((-A + B)*AppellF1[3/2, 2/3, 1, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*(Cos[c +
d*x]*Sec[(c + d*x)/2]^2)^(2/3)*Tan[(c + d*x)/2]^2 + (27*(A + B)*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2,
 -Tan[(c + d*x)/2]^2]*Cos[(c + d*x)/2]^2)/(9*AppellF1[1/2, 2/3, 1, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^
2] + 2*(-3*AppellF1[3/2, 2/3, 2, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + 2*AppellF1[3/2, 5/3, 1, 5/2,
Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/2]^2))*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c + d*x)/
2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(9*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(1/3))))

________________________________________________________________________________________

Maple [F]  time = 0.176, size = 0, normalized size = 0. \begin{align*} \int{(A+B\sec \left ( dx+c \right ) ){\frac{1}{\sqrt [3]{a+a\sec \left ( dx+c \right ) }}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/3),x)

[Out]

int((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/(a*sec(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \sec{\left (c + d x \right )}}{\sqrt [3]{a \left (\sec{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(1/3),x)

[Out]

Integral((A + B*sec(c + d*x))/(a*(sec(c + d*x) + 1))**(1/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)/(a*sec(d*x + c) + a)^(1/3), x)